Safety Data Sheet

WESTOX AP GLAZECOAT PART A

Westlegate Pty Ltd.

Chemwatch: 43042 Version No: 6.1.1.1

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **29/08/2019** Print Date: **12/09/2019** L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	WESTOX AP GLAZECOAT PART A		
Synonyms	ay coating		
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Other means of identification	Not Available		

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Reactive acrylic spray coating designed to combine with a second component to provide a tough, durable air dried or force dried finish with the properties of baked enamels on suitably prepared metal, timber, masonry and some plastics.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	Westlegate Pty Ltd.	
Address	16 Frost Road Campbelltown NSW 2560 Australia	
Telephone	1 2 4628 5010	
Fax	+61 2 4628 5020	
Website	www.westox.com	
Email	info@westox.com	

Emergency telephone number

Association / Organisation	Poisons Information Centre	
Emergency telephone numbers	3 11 26 (24hr) (Australian Poisons Information Cantre), 000 (Police, Fire Brigade or Ambulance)	
Other emergency telephone numbers	0800 764 766 (24hr) (NewZealand Poisons Information Centre), 111 (NZ Emergency Services)	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	S5	
Classification [1]	Flammable Liquid Category 3, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Carcinogenicity Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1, Acute Aquatic Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD DANGER

Chemwatch: **43042** Version No: **6.1.1.1** Page 2 of 17

WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019 Print Date: 12/09/2019

Hazard statement(s)

H226	Flammable liquid and vapour.		
H312	Harmful in contact with skin.		
H332	Harmful if inhaled.		
H315	Causes skin irritation.		
H319	Causes serious eye irritation.		
H351	Suspected of causing cancer.		
H335	May cause respiratory irritation.		
H336	May cause drowsiness or dizziness.		
H304	May be fatal if swallowed and enters airways.		
H402	Harmful to aquatic life.		
AUH019	May form explosive peroxides.		
AUH066	Repeated exposure may cause skin dryness and cracking.		

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.	
P271	Use only outdoors or in a well-ventilated area.	
P281	Use personal protective equipment as required.	
P240	Ground/bond container and receiving equipment.	
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.	
P242	Use only non-sparking tools.	
P243	Take precautionary measures against static discharge.	
P261	Avoid breathing mist/vapours/spray.	
P273	Avoid release to the environment.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s) Response

IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.		
IF exposed or concerned: Get medical advice/attention.		
Specific treatment (see advice on this label).		
Specific measures (see advice on this label).		
Do NOT induce vomiting.		
Take off contaminated clothing and wash before reuse.		
In case of fire: Use alcohol resistant foam or normal protein foam for extinction.		
IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
Call a POISON CENTER or doctor/physician if you feel unwell.		
If eye irritation persists: Get medical advice/attention.		
IF ON SKIN: Wash with plenty of soap and water.		
IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.		
IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.		
If skin irritation occurs: Get medical advice/attention.		

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1330-20-7	20-60	<u>xylene</u>
108-10-1	10-30	methyl isobutyl ketone
Not Available	10-30	acrylic polyol, hydroxy functional
Not Available	0-30	petroleum hydrocarbon mixture

Chemwatch: 43042 Page
Version No: 6.1.1.1

WESTOX AP GLAZECOAT PART A

Page 3 of 17 Issue Date: 29/08/2019
Print Date: 12/09/2019

Not Available	0-30	inert pigments/fillers
108-65-6	10	propylene glycol monomethyl ether acetate, alpha-isomer
7631-86-9	10	silica amorphous
Not Available	10	additives, unspecified

SECTION 4 FIRST AID MEASURES

Description of first aid measures

•		
Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.	
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform Cl necessary. Transport to hospital, or doctor, without delay. 	
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. 	

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically.

for simple ketones:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- ▶ Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- ► Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5mL/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- ► Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Consider intubation at first sign of upper airway obstruction resulting from oedema.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- ► Drug therapy should be considered for pulmonary oedema.
- ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

Chemwatch: 43042 Version No: 6.1.1.1 Page 4 of 17

WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019 Print Date: 12/09/2019

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Methylhippu-ric acids in urine

Index 1.5 gm/gm creatinine 2 ma/min

Sampling Time Fnd of shift Last 4 hrs of shift Comments

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.

Advice for firefighters

Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Fire Fighting

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

► Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame.

- Vapour forms an explosive mixture with air.
- ▶ Moderate explosion hazard when exposed to heat or flame.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Fire/Explosion Hazard

Combustion products include: carbon dioxide (CO2)

formaldehyde

silicon dioxide (SiO2)

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

HAZCHEM

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

 Remove all ignition source
 Clean up all spills immedia

Minor Spills

- ately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material
- ► Collect residues in a flammable waste container.

Clear area of personnel and move upwind.

- ► Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources. Increase ventilation.

Major Spills

- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Chemwatch: 43042 Version No: 6.1.1.1

Page 5 of 17 WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019 Print Date: 12/09/2019

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with mar erial to stay in contact with skin

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

- A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this
- Fig. The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening
- Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area. Safe handling
 - Prevent concentration in hollows and sumps.
 - DO NOT enter confined spaces until atmosphere has been checked
 - Avoid smoking, naked lights or ignition sources.
 - Avoid generation of static electricity.
 - DO NOT use plastic bucket
 - Earth all lines and equipment.
 - Use spark-free tools when handling.
 - Avoid contact with incompatible materials.
 - When handling, DO NOT eat, drink or smoke

 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
 - ▶ Store in original containers in approved flammable liquid storage area.
 - Store away from incompatible materials in a cool, dry, well-ventilated area.
 - **DO NOT** store in pits, depressions, basements or areas where vapours may be trapped.
 - No smoking, naked lights, heat or ignition sources
 - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access.
 - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances
 - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
 - ► Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors
 - ▶ Keep adsorbents for leaks and spills readily available.
 - Protect containers against physical damage and check regularly for leaks.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up
- ▶ Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

Other information

- ▶ Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

- ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity. Methyl isobutyl ketone (MIBK)

Storage incompatibility

Suitable container

- forms unstable and explosive peroxides on contact with air and/ or when in contact with hydrogen peroxide
- reacts violently with strong oxidisers, aldehydes, aliphatic amines, nitric acid, perchloric acid, potassium tert-butoxide, strong acids, reducing agents
- dissolves some plastics, resins and rubber
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds

Ketones in this group:

- are reactive with many acids and bases liberating heat and flammable gases (e.g., H2).
- react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat.

Chemwatch: 43042 Page 6 of 17 Issue Date: 29/08/2019 Version No: 6.1.1.1

WESTOX AP GLAZECOAT PART A

Print Date: 12/09/2019

- $\blacksquare \ \ \text{are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides.}$
- react violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HClO4 (perchloric acid).
- ▶ may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives.

A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared to hydrogen atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion. This property allows ketones, especially methyl ketones, to participate in condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured by high substrate concentrations and high pH (greater than 1 wt% NaOH).

► Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	methyl isobutyl ketone	Methyl isobutyl ketone	50 ppm / 205 mg/m3	307 mg/m3 / 75 ppm	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available
Australia Exposure Standards	silica amorphous	Diatomaceous earth (uncalcined)	10 mg/m3	Not Available	Not Available	See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Precipitated silica	10 mg/m3	Not Available	Not Available	See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Precipitated silica	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Silica gel	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica gel	10 mg/m3	Not Available	Not Available	See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Fumed silica (respirable dust)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Fume (thermally generated) (respirable dust)	2 mg/m3	Not Available	Not Available	(e) Containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Fumed silica (respirable dust)	2 mg/m3	Not Available	Not Available	See Silica -Amorphous
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Diatomaceous earth (uncalcined)	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
xylene	Xylenes	Not Available	Not Available	Not Available
methyl isobutyl ketone	Methyl isobutyl ketone; (Hexone)	75 ppm	500 ppm	3000 ppm
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate)	Not Available	Not Available	Not Available
silica amorphous	Silica gel, amorphous synthetic	18 mg/m3	200 mg/m3	1,200 mg/m3
silica amorphous	Silica, amorphous fumed	18 mg/m3	100 mg/m3	630 mg/m3
silica amorphous	Siloxanes and silicones, dimethyl, reaction products with silica; (Hydrophobic silicon dioxide, amorphous)	120 mg/m3	1,300 mg/m3	7,900 mg/m3
silica amorphous	Silica, amorphous fume	45 mg/m3	500 mg/m3	3,000 mg/m3
silica amorphous	Silica amorphous hydrated	18 mg/m3	220 mg/m3	1,300 mg/m3

Ingredient	Original IDLH	Revised IDLH
xylene	900 ppm	Not Available
methyl isobutyl ketone	500 ppm	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available
silica amorphous	3,000 mg/m3	Not Available

Chemwatch: 43042
Version No: 6.1.1.1

Page 7 of 17 WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019
Print Date: 12/09/2019

Exposure controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed: 0.25-0.5 m/s solvent, vapours, degreasing etc., evaporating from tank (in still air). (50-100 f/min.) 0.5-1 m/s aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating (100-200 acid fumes, pickling (released at low velocity into zone of active generation) f/min.) 1-2.5 m/s direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into (200-500 zone of rapid air motion) f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Appropriate engineering

controls

Eye and face protection

Safety glasses with side shields.Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min

Version No: **6.1.1.1**

WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019
Print Date: 12/09/2019

Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

- ▶ Overalls.
- PVC Apron.
- Other protection
- ▶ PVC protective suit may be required if exposure severe
- Eyewash unit.
- ▶ Ensure there is ready access to a safety shower.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

WESTOX AP GLAZECOAT PART A

Material	СРІ
PE/EVAL/PE	A
PVA	A
TEFLON	A
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PVC	С
PVDC/PE/PVDC	С
VITON	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Available in various colours. Flammable liquid with strong lacquer odour; does not mix with water.		
Physical state	Liquid	Relative density (Water = 1)	0.925-1.130
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	465
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	138	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	40 (xylene)	Taste	Not Available

Chemwatch: **43042** Page **9** of **17** Issue Date: **29/08/2019**Version No. **6.1.1.1** Print Date: **12/09/2019**

WESTOX AP GLAZECOAT PART A

	•		
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7.0 (xylene)	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.7 (xylene)	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	>1	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination

and vertigo.

Inhalation hazard is increased at higher temperatures.

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Mice exposed at up to 3000 ppm PGMEA 6 hr/day for a total of 9 days during an 11-day period showed no pronounced effect on the weights of liver, kidneys, heart, spleen, thymus or testes. Histopathological examination revealed degeneration of the olfactory epithelium in mice exposed at 300 ppm for the same time. Rats, similarly failed to show changes in internal organs and did not show olfactory epithelium degeneration until 3000 ppm. The no-effect level in rats was 1000 ppm.

Inhaled

Human overexposure to MIBK vapour may produce weakness, loss of appetite, headache, a burning sensation to the eyes, stomach-ache, nausea and vomiting. Sore throat, insomnia, somnolence, heartburn and intestinal pain have been reported by some workers. Tolerance is reported to be acquired over the workweek and lost during the weekend.

Exposure to high concentrations (>1000 ppm) can produce central nervous system depression and narcosis. Lower doses (80-500 ppm) can cause weakness, headache and nausea.

Rats, mice, dogs and monkeys that inhaled 100 or 200 ppm MIBK 24 hrs/day showed no outward adverse effects during 2 weeks of exposure. At 200 ppm rats showed increased absolute liver and kidney weights and increased organ-to-body weight ratios. Examination of the proximal tubules showed toxic nephrosis (hyaline droplet degeneration and occasional focal tubular necrosis) in rats exposed to 100 ppm. This damage was considered transient and reversible. Discriminatory behaviour and memory in baboons was effected at exposures of 50 ppm for 7 days.

Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue.

Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

Considered an unlikely route of entry in commercial/industrial environments The liqu

Considered an unlikely route of entry in commercial/industrial environments The liquid may produce considerable gastrointestinal discomfort and may be harmful or toxic if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis

Skin contact with the material may be harmful; systemic effects may result following absorption.

The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either

- produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin Contact

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Repeated application of commercial grade PGMEA to the skin of rabbits for 2-weeks caused slight redness and very slight exfoliation.

Open cuts, abraded or irritated skin should not be exposed to this material $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine

Chemwatch: **43042** Page **10** of **17**

Version No: **6.1.1.1**

WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019
Print Date: 12/09/2019

the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eve

Chronic

Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur, permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight conjunctival redness and slight corneal injury in rabbits

At concentrations of 100-200 ppm MIBK, the vapour may irritate the eyes and respiratory tract

The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Comeal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) (1000 ppm and above) causes mild liver and kidney damage in animals.

A minor component, 2-methoxy-1-propyl acetate (the beta-isomer) produced birth defects on inhalation exposure of pregnant rabbits at 545 ppm, but not at 145 or 36 ppm; maternal and embryo/foetal toxicity on inhalation exposure of pregnant rats at 2710 ppm, but not at 545 or 110 ppm; and no adverse effects on dermal exposure of pregnant rabbits at applied dosages of 1000 and 2000 mg/kg of body weight per day during the critical period or embryo/foetal development. In a further study, no developmental effects were seen following exposure of pregnant rats at air concentrations of commercial propylene glycol monomethyl ether acetate (containing 3-5% of the minor component) up to 4000 ppm; slight maternal effects were seen at 5000 ppm and greater. Exposure of pregnant rats and rabbits to the parent glycol ether, propylene glycol monomethyl ether which contained comparable amounts of the primary isomer, 2-methoxy-1-propanol, did not produce teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rat foetuses but not in rabbit foetuses at this concentration and maternal toxicity was noted in both species at this concentration

Experiments with rats exposed to MIBK have shown nerve changes characteristic of neuropathy (disease of the peripheral nerves usually causing weakness and numbness).

Chronic occupational exposure to 500 ppm MIBK in air (20-30 mins/day, and 80 ppm for the remainder of the workday resulted in nausea, headache, burning eyes, and weakness in over half the workers. Some workers reported somnolence, insomnia and intestinal pain, and 4/19 appeared to have enlarged livers. This study was continued 5 years after MIBK concentrations had been reduced to 100-105 ppm for the 20-30 minutes exposures and 50 ppm for the general exposure. A few workers still experienced gastrointestinal and neurological problems and slight liver enlargement was found in two individuals. Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions.

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

WESTOX AP GLAZECOAT PART A	TOXICITY	IRRITATION		
	Not Available	Not Available		
	TOXICITY	IRRITATION		
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant		
	Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE		
xylene	Oral (rat) LD50: 3523-8700 mg/kg ^[2]	Eye (rabbit): 87 mg mild		
		Eye: adverse effect observed (irritating) ^[1]		
		Skin (rabbit):500 mg/24h moderate		
		Skin: adverse effect observed (irritating) ^[1]		
	TOXICITY	IRRITATION		
	De-mark (arthrit) DE01 40000 marker [2]	Eye (human): 200 ppm/15m		
	Dermal (rabbit) LD50: >16000 mg/kg ^[2]	Lye (numan). 200 ppm/13m		
methyl isobutyl ketone	Oral (rat) LD50: 2080 mg/kg ^[2]	Eye (rabbit): 40 mg - SEVERE		
methyl isobutyl ketone				
methyl isobutyl ketone		Eye (rabbit): 40 mg - SEVERE		
methyl isobutyl ketone		Eye (rabbit): 40 mg - SEVERE Eye (rabbit): 500 mg/24h - mild		
	Oral (rat) LD50: 2080 mg/kg ^[2]	Eye (rabbit): 40 mg - SEVERE Eye (rabbit): 500 mg/24h - mild Skin (rabbit): 500 mg/24h - mild		
methyl isobutyl ketone propylene glycol monomethyl ether acetate, alpha-isomer	Oral (rat) LD50: 2080 mg/kg ^[2] TOXICITY	Eye (rabbit): 40 mg - SEVERE Eye (rabbit): 500 mg/24h - mild Skin (rabbit): 500 mg/24h - mild IRRITATION		

Chemwatch: 43042
Version No: 6.1.1.1

WESTOX AP GLAZECOAT PART A

Page 11 of 17

Issue Date: 29/08/2019
Print Date: 12/09/2019

silica amorphous

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye (rabbit): non-irritating *
Inhalation (rat) LC50: >0.139 mg/l/14h**[Grace] ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
Oral (rat) LD50: 3160 mg/kg ^[2]	Skin (rabbit): non-irritating *
	Skin: no adverse effect observed (not irritating) ^[1]

Legend:

XYLENE

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

-, ----

Reproductive effector in rats

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For methyl isobutyl ketone (MIBK):

METHYL ISOBUTYL KETONE

MIBK is primarily absorbed by the lungs in animals and humans; it can however be absorbed by the gastrointestinal system and through skin.

In two cases involving individuals exposed to the vapour MIBK was found in the brain, liver, lung, vitreous fluid, kidney and blood.

Experiments in guinea pigs show that MIBK is metabolised to 4-hydroxy-4-methyl-2-pentanone and 4-methyl-2-pentanol. Ketones are generally excreted rapidly in expired air. Small amounts of MIBK are also excreted in the urine. Humans excreted less than 0.1% of the dose as unmetabolised MIBK in the urine within the first 3 hours post exposure. Serum half-life in guinea pigs is about 55 minutes with a clearance time of 6 hours

In animal studies, the acute systemic toxicity of MIBK, via the oral and inhalation routes of exposure, is low. In a 90-day gavage study on rats, a no-observed-effect level (NOEL) of 50 mg/kg per day was found. In 90-day inhalation studies on rats and mice, concentrations of up to 4100 mg/m3 (1000 ppm) did not result in significant toxicity, though compound-related reversible morphological changes were reported in the liver and kidney. Evidence of central nervous system depression was seen in animals exposed to a level of 4100 mg/m3 (1000 ppm). In a number of studies, exposure to MIBK concentrations as low as 1025 mg/m3 (250 ppm) resulted in an increase in liver size and induced hepatic microsomal metabolism. This may be responsible for the exacerbation of haloalkane toxicity and for the potentiation of the neurotoxicity of rn-hexane. MIBK was also found to potentiate the cholestatic effects of manganese given with, or without, bilirubin. In 90-day studies on mice, rats, dogs, and monkeys, only male rats developed hyaline droplets in the proximal tubules of the kidney. Effects on behaviour were reported in baboons exposed for 7 days to 205 mg/m3 (50 ppm). At a concentration of 4100 mg/m3 (1000 ppm), MIBK was not embryotoxic, foetotoxic, or teratogenic in rats or mice. Foetotoxicity was only observed at concentrations of MIBK that caused maternal toxicity. MIBK did not induce gene mutations in *in vitro* bacterial test systems with, or without, metabolic activation, in tests for mitotic gene conversion in yeast, and for gene mutation in cultured mammalian cells. The results of *in vitro* assays for unscheduled DNA synthesis in primary rat hepatocytes and for structural chromosome damage in cultured rat liver cells were negative. An *in vivo* micronucleus test on mice was negative. These data indicate that MIBK is not genotoxic. No long-term or carcinogenicity studies are available. The toxicity of MIBK for aquatic organisms and microorganisms is low.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolities of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations.

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER Chemwatch: 43042 Page 12 of 17 Issue Date: 29/08/2019 Version No: 6.1.1.1

WESTOX AP GLAZECOAT PART A

Print Date: 12/09/2019

PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating

None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB - 13 wk) and 450 mg/kg-d (DPnB - 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM. increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health. In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. In vitro, negative results have been seen in a number of assays for PnB, DPnB, DPnB, and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic in vivo. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects.

The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I]

Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS]

For silica amorphous:

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals.

After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.

Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact.

Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL. Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected

In humans, SAS is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin. There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and

XYLENE & SILICA **AMORPHOUS**

SILICA AMORPHOUS

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

chest radiographs are not adversely affected by long-term exposure to SAS.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	✓

Legend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

WESTOX AP GLAZECOAT
PART A

ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
Not Available	Not Available	Not Available	Not Available	Not Available

Chemwatch: 43042 Page 13 of 17

Version No: 6.1.1.1

WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019 Print Date: 12/09/2019

	1				
xylene	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	2.6mg/L	2
	EC50	48	Crustacea	1.8mg/L	2
	EC50	72	Algae or other aquatic plants	3.2mg/L	2
	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	69.808mg/L	3
methyl isobutyl ketone	EC50	48	Crustacea	=170mg/L	1
	EC50	96	Algae or other aquatic plants	275.488mg/L	3
	NOEC	504	Crustacea	30mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	100mg/L	1
propylene glycol monomethyl	EC50	48	Crustacea	373mg/L	2
ether acetate, alpha-isomer	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	96	Algae or other aquatic plants	>=1-mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
silica amorphous	LC50	96	Fish	1-289.09mg/L	2
	EC50	48	Crustacea	ca.7600mg/L	1
·	EC50	72	Algae or other aquatic plants	440mg/L	1
	NOEC	720	Crustacea	34.223mg/L	2
		I	I .	1	

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7, METI (Japan) - Bioconcentration Data 8, Vendor Data

Harmful to aquatic organisms.

for propylene glycol ethers:

Environmental fate:

Most are liquids at room temperature and all are water-soluble.

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl

Environmental fate: Log octanol-water partition coefficients (log Kow's) range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPnB and TPM, indicating low bioaccumulation. Henry's Law Constants, which indicate propensity to partition from water to air, are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Fugacity modeling indicates that most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). Propylene glycol ethers are unlikely to persist in the environment. Once in air, the half-life of the category members due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. In water, most members of this family are "readily biodegradable" under aerobic conditions. (DPMA degraded within 28 days (and within the specified 10-day window) but only using pre-adapted or "acclimated" inoculum.). In soil, biodegradation is rapid for PM and PMA.

Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For ethers, effect concentrations are > 500 mg/L. For acetates, effect concentrations are > 151 mg/L. Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene. The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthrocene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

For xylenes: log Koc : 2.05-3.08 Koc: 25.4-204 Half-life (hr) air : 0.24-42

Half-life (hr) H2O surface water : 24-672 Half-life (hr) H2O ground: 336-8640 Half-life (hr) soil: 52-672

Henry's Pa m3 /mol: 637-879 Henry's atm m3 /mol: 7.68E-03 BOD 5 if unstated: 1.4,1% COD: 2.56,13%

ThOD: 3.125 BCF: 23 log BCF : 1.17-2.41

Environmental Fate

Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil). The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. p-Xylene, present in soil samples contaminated with jet fuel, was completely degraded aerobically within 5 days. In aquifer studies under anaerobic conditions, p-xylene was degraded, usually within several weeks, with the production of 3-methylbenzylfurnaric acid, 3-methylbenzylsuccinic acid, 3-methylbenzoate, and 3-methylbenzaldehyde as metabolites

Aquatic fate: Koc values indicate that p-xylene may adsorb to suspended solids and sediment in water. p-Xylene is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. BCF values of 14.8, 23.4, and 6, measured in goldfish, eels, and clams, respectively, indicate that bioconcentration in aquatic organisms is low. p-Xylene in water with added humic substances was 50% degraded following 3 hours irradiation suggesting that indirect photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. Although p-xylene is biodegradable and has been observed to degrade in pond water, Chemwatch: **43042** Page **14** of **17**

Version No: 6.1.1.1

WESTOX AP GLAZECOAT PART A

Issue Date: 29/08/2019
Print Date: 12/09/2019

there are insufficient data to assess the rate of this process in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater in several studies; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high.

Atmospheric fate:

Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere primarily by reaction with photochemically-produced hydroxyl radicals, with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylenes' susceptibility to photochemical oxidation in the troposphere is to the extent that they may contribute to photochemical smog formation.

According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and from its vapour pressure, p-xylene, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase p-xylene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 16 hours. A half-life of 1.0 hr in summer and 10 hr in winter was measured for the reaction of p-xylene with photochemically-produced hydroxyl radicals. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers, with loss rates varying from 9-42% per hr. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylghoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Ecotoxicity:

for xylenes

Fish LC50 (96 h) Pimephales promelas 13.4 mg/l; Oncorhyncus mykiss 8.05 mg/l; Lepomis macrochirus 16.1 mg/l (all flow through values); Pimephales promelas 26.7 (static) Daphnia EC50 948 h): 3.83 mg/l

Dapnnia EC50 948 n): 3.83 mg/i

Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/l

Gammarus lacustris LC50 (48 h): 0.6 mg/l

For ketones:

Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds

Hydrolysis may also involve the addition of water to ketones to yield ketals under mild acid conditions. However, this addition of water is thermodynamically favorable only for low molecular weight ketones. This addition is an equilibrium reaction that is reversible upon a change of water concentration and the reaction ultimately leads to no permanent change in the structure of the ketone substrate The higher molecular weight ketones do no form stable ketals. Therefore, the ketones are stable to water under ambient environmental conditions

Another possible reaction of ketones in water involves the enolic hydrogen on the carbons bonded to the carbonyl function. Under conditions of high pH (pH greater than 10), the enolic proton is abstracted by base (OH-) forming a carbanion intermediate that may react with other organic substrates (e.g., ketones, esters, aldehydes) containing a center for nucleophilic attack. The reactions, commonly recognized as condensation reactions, produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavorable.

Based on its reactions in air, it seems likely that ketones undergo photolysis in water. It is probable that ketones will be biodegraded to an appreciable degree by micro-organisms in soil and water. They are unlikely to bioconcentrate or biomagnify.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
methyl isobutyl ketone	HIGH (Half-life = 7001 days)	LOW (Half-life = 1.9 days)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW
silica amorphous	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
xylene	MEDIUM (BCF = 740)
methyl isobutyl ketone	LOW (LogKOW = 1.31)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)
silica amorphous	LOW (LogKOW = 0.5294)

Mobility in soil

•	
Ingredient	Mobility
methyl isobutyl ketone	LOW (KOC = 10.91)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)
silica amorphous	LOW (KOC = 23.74)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ► Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- $\blacksquare \ \ \, \text{Where possible retain label warnings and SDS and observe all notices pertaining to the product.}$

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Product / Packaging disposal

- ► Reduction ► Reuse
- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains
- ▶ It may be necessary to collect all wash water for treatment before disposal.

Issue Date: 29/08/2019 Print Date: 12/09/2019

WESTOX AP GLAZECOAT PART A

- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant
HAZCHEM

NO

•3Y

Land transport (ADG)

UN number	1263		
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	Class 3 Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 163 223 367 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

	polish, liquid filler and liquid lacquer base); Paint related material (including paint thinr
Applicable	
	A3 A72 A192
ns	366
ck	220 L
g Instructions	355
ım Qty / Pack	60 L
Quantity Packing Instructions	Y344
Maximum Qty / Pack	10 L
r g	ns ck g Instructions m Qty / Pack Quantity Packing Instructions

Sea transport (IMDG-Code / GGVSee)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable
Packing group	III
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L

hazards

Issue Date: 29/08/2019
Print Date: 12/09/2019

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

XYLENE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Hazardous chemicals which may require Health Monitoring

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2, Section Seven - Appendix I

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures

containing at least 99% by weight of components already assessed by IMO, presenting safety

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

METHYL ISOBUTYL KETONE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

5

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
Australia Exposure Standards
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)
GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements
IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk
International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

SILICA AMORPHOUS IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 4}$

GESAMP/EHS Composite List - GESAMP Hazard Profiles

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (propylene glycol monomethyl ether acetate, alpha-isomer; xylene; methyl isobutyl ketone)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	29/08/2019
Initial Date	21/05/2002

Chemwatch: 43042 Page 17 of 17 Issue Date: 29/08/2019 Version No: 6.1.1.1 Print Date: 12/09/2019

WESTOX AP GLAZECOAT PART A

SDS Version Summary

Version	Issue Date	Sections Updated	
5.1.1.1	27/08/2018	Name	
6.1.1.1	29/08/2019	Personal Protection (other)	

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chernwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Safety Data Sheet

WESTOX AP GLAZECOAT PART B

Westlegate Pty Ltd.

Chemwatch Hazard Alert Code: 2

Chemwatch: 43043 Version No: 7.1.1.1

Safety Data Sheet according to WHS and ADG requirements

Issue Date: **14/03/2024**Print Date: **14/03/2024**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	WESTOX AP GLAZECOAT PART B			
Synonyms	polyurethane hardener			
Proper shipping name	RESIN SOLUTION, flammable			
Other means of identification	Not Available			

Relevant identified uses of the substance or mixture and uses advised against

28nco
Part B or Hardener of a 2 pack
urethane coating system
Requires that the two parts be mixed by hand or mixer before use, in accordance with manufacturers directions. Mix only as much as is required. **Do**not return the mixed material to the original containers
Application is usually by spray atomisation in a ventilated spray booth, after viscosity reduction with thinner

CONTAINS free organic isocyanate. Mixing and application requires special precautions and use of personal protective gear [APMF] Part B or Hardener of a 2 pack urethane coating system.

Details of the supplier of the safety data sheet

Relevant identified uses

Registered company name	Westlegate Pty Ltd.	
Address	16 Frost Road Campbelltown NSW 2560 Australia	
Telephone	+61 2 4628 5010	
Fax	+61 2 4628 5020	
Website	www.westox.com	
Email	info@westox.com	

Emergency telephone number

Association / Organisation	Poisons Information Centre		
Emergency telephone numbers	3 11 26 (24hr) (Australian Poisons Information Cantre), 000 (Police, Fire Brigade or Ambulance)		
Other emergency telephone	0800 764 766 (24hr) (NewZealand Poisons Information Centre), 111 (NZ Emergency Services)		
numbers	Joou 704 706 (24III) (NewZealand Poisons information Centre), TTT (NZ Emergency Services)		

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	S6
Classification ^[1]	Flammable Liquid Category 3, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Respiratory Sensitizer Category 1, Carcinogenicity Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1, Acute Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Chemwatch: 43043 Issue Date: 14/03/2024 Page 2 of 19 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

SIGNAL WORD DANGER

Hazard statement(s)

nazaro statement(s)	
H226	Flammable liquid and vapour.
H312	Harmful in contact with skin.
H332	Harmful if inhaled.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H351	Suspected of causing cancer.
H335	May cause respiratory irritation.
H336	May cause drowsiness or dizziness.
H304	May be fatal if swallowed and enters airways.
H402	Harmful to aquatic life.
AUH019	May form explosive peroxides.
AUH066	Repeated exposure may cause skin dryness and cracking.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P261	Avoid breathing mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P285	In case of inadequate ventilation wear respiratory protection.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.			
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.			
P308+P313	IF exposed or concerned: Get medical advice/attention.			
P331	Do NOT induce vomiting.			
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician.			
P362	Take off contaminated clothing and wash before reuse.			
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.			
P302+P352	F ON SKIN: Wash with plenty of soap and water.			
P305+P351+P338 rinsing.	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue			
P312	Call a POISON CENTER or doctor/physician if you feel unwell.			
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.			
P337+P313	If eye irritation persists: Get medical advice/attention.			
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.			

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

Dispose of contents/container in accordance with local regulations.

Chemwatch: 43043 Page 3 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
28182-81-2	20-60	hexamethylene diisocyanate polymer
1330-20-7	10-30	xylene
108-65-6	10-30	propylene glycol monomethyl ether acetate, alpha-isomer
108-10-1	10-30	methyl isobutyl ketone
822-06-0	0.5	hexamethylene diisocyanate

SECTION 4 FIRST AID MEASURES

Description of first aid measures

•	
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically.

for simple esters:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- ▶ Monitor and treat, where necessary, for pulmonary oedema .
- ▶ Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For sub-chronic and chronic exposures to isocyanates:

▶ This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.

Chemwatch: 43043 Page 4 of 19 Issue Date: 14/03/2024

Version No: 7.1.1.1 Print Date: 14/03/2024 **WESTOX AP GLAZECOAT PART B**

- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates.
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line
- ▶ Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- ▶ Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- ▶ Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Methylhippu-ric acids in urine

Index 1.5 gm/gm creatinine 2 mg/min

Sampling Time End of shift Last 4 hrs of shift

Comments

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- > Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
- Presents additional hazard when fire fighting in a confined space.
- Cooling with flooding quantities of water reduces this risk.
- Water spray or fog may cause frothing and should be used in large quantities.
- Foam.
- Dry chemical powder
- ▶ BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Fighting

Fire Incompatibility • Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- ▶ If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- ▶ DO NOT approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- ▶ Liquid and vapour are flammable.
- ▶ Moderate fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Moderate explosion hazard when exposed to heat or flame.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

Fire/Explosion Hazard

carbon dioxide (CO2) isocyanates

and minor amounts of hydrogen cyanide

formaldehyde

nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

Burns with acrid black smoke

Chemwatch: 43043 Page 5 of 19

Issue Date: 14/03/2024 Version No: 7.1.1.1 Print Date: 14/03/2024 **WESTOX AP GLAZECOAT PART B**

HAZCHEM •3Y **SECTION 6 ACCIDENTAL RELEASE MEASURES**

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Remove all ignition sources.

Minor Spills

- Clean up all spills immediately Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment. • Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- ▶ Collect residues in a flammable waste container.
- Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus SCBA should be used inside encapsulating suit where this exposure may occur.

For isocyanate spills of less than 40 litres (2 m2):

- Feacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible.
- Notify supervision and others as necessary.
- ▶ Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots).
- ▶ Control source of leakage (where applicable).
- Dike the spill to prevent spreading and to contain additions of decontaminating solution.
- Prevent the material from entering drains.
- Estimate spill pool volume or area.
- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- Shovel absorbent/decontaminant solution mixture into a steel drum.
- ▶ Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. - Completely cover decontaminant with vermiculite or other similar absorbent. - After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- ▶ Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately. Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- Return to normal operation.
- Conduct accident investigation and consider measures to prevent reoccurrence.

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ("neutralising fluid"). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of (ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v). Let stand for 24 hours Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A:

Major Spills

liquid surfactant 0.2-2% sodium carbonate 5-10% water to 100% Formulation B

0.2-2% liquid surfactant concentrated ammonia 3-8% water to 100%

Formulation C

ethanol, isopropanol or butanol 50% concentrated ammonia 5% 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- ▶ Avoid contamination with water, alkalies and detergent solutions
- ▶ Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- DO NOT reseal container if contamination is suspected.
- ▶ Open all containers with care.
- DO NOT touch the spill material
- ▶ Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- ▶ May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.

Continued...

Chemwatch: 43043 Issue Date: 14/03/2024 Page 6 of 19 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- ▶ Use only spark-free shovels and explosion proof equipment.
- ▶ Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe

- ▶ DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION potential.
- Any static discharge is also a source of hazard.
- ▶ Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina.
- Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage.
- Add inhibitor to any distillate as required.
- ▶ When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

- A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date.
- ▶ The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.
- ▶ Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- **DO NOT** enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets
- ▶ Earth all lines and equipment. Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- Store in original containers in approved flammable liquid storage area. ▶ Store away from incompatible materials in a cool, dry, well-ventilated area.
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access. Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable
- quantities and minimum storage distances.
- ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. ▶ Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and
- flammable gas detectors. Keep adsorbents for leaks and spills readily available.
- Protect containers against physical damage and check regularly for leaks.

Observe manufacturer's storage and handling recommendations contained within this SDS.

Other information In addition, for tank storages (where appropriate):

- ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. Storage tanks should be above ground and diked to hold entire contents.

Consider storage under inert gas.

for commercial quantities of isocvanates:

- Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
- Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken
- ▶ Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).
- Fransfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages,

Chemwatch: 43043 Page 7 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

- should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.

Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- ▶ Plastic containers may only be used if approved for flammable liquid.
- ▶ Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (iii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C) Suitable container
 - ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 - ▶ Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
 - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
 - ▶ In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic
 - Avoid reaction with water, alcohols and detergent solutions.
 - ▶ Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
 - ▶ Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
 - ▶ Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming in confined spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
 - ▶ Do NOT reseal container if contamination is expected
 - ▶ Open all containers with care
 - ▶ Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence.
 - Isocyanates will attack and embrittle some plastics and rubbers.
 - ▶ A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
 - ▶ The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
 - For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	hexamethylene diisocyanate polymer	Isocyanates, all (as-NCO)	0.02 mg/m3	0.07 mg/m3	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available
Australia Exposure Standards	methyl isobutyl ketone	Methyl isobutyl ketone	50 ppm / 205 mg/m3	307 mg/m3 / 75 ppm	Not Available	Not Available
Australia Exposure Standards	hexamethylene diisocyanate	Hexamethylene diisocyanate	Not Available	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
hexamethylene diisocyanate polymer	Hexamethylene diisocyanate polymer	7.8 mg/m3	86 mg/m3	510 mg/m3
xylene	Xylenes	Not Available	Not Available	Not Available
propylene glycol monomethyl ether- acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate)	Not Available	Not Available	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, beta-isomer; (2-Methoxypropoyl-1-acetate)	Not Available	Not Available	Not Available
methyl isobutyl ketone	Methyl isobutyl ketone; (Hexone)	75 ppm	500 ppm	3000 ppm
hexamethylene diisocyanate	Hexamethylene diisocyanate; (1,6-Diisocyanatohexane)	0.018 ppm	0.2 ppm	3 ppm

Ingredient	Original IDLH	Revised IDLH
hexamethylene diisocyanate polymer	Not Available	Not Available
xylene	900 ppm	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available

Chemwatch: 43043 Page 8 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1 Print Date: 14/03/2024

WESTOX AP GLAZECOAT PART B

500 ppm Not Available methyl isobutyl ketone hexamethylene diisocyanate Not Available Not Available

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area. NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- ▶ All processes in which isocyanates are used should be enclosed wherever possible.
- ▶ Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard

Personal protection

Eye and face protection

Hands/feet protection

- Safety glasses with side shields.
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the
- wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption

class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment. to avoid all possible skin contact

Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Chemwatch: 43043 Page 9 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

Excellent when breakthrough time > 480 min

- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Do NOT wear natural rubber (latex gloves).
- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- Protective gloves and overalls should be worn as specified in the appropriate national standard.
- Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates
- DO NOT use skin cream unless necessary and then use only minimum amount.
- Isocyanate vapour may be absorbed into skin cream and this increases hazard.
- Polyethylene gloves

Body protection

See Other protection below

All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
- Other protection
- PVC Apron. PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

WESTOX AP GLAZECOAT PART B

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
TEFLON	С
VITON	С

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

For spraying or operations which might generate aerosols:

Chemwatch: 43043 Page 10 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove,

a final selection must be based on detailed observation.

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Full face respirator with supplied air.

- In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- ▶ However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying respirators are NOT suitable.
- ▶ Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected. Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Pale amber flammable liquid with strong lacquer odour; does not mix with water.		
Physical state	Liquid Relative density (Water = 1) 0.970-0.980		
1 Hydrodi diato			0.010 0.000
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	465
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	_138	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	27	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
		Surface Tension (dyn/cm or	
Upper Explosive Limit (%)	7.0 (xylene)	mN/m)	Not Available
Lower Explosive Limit (%)	1.7 (xylene)	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Reacts	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo

Inhaled

The vapour/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitised persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures.

Chemwatch: 43043 Page 11 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

Print Date: 14/03/2024 **WESTOX AP GLAZECOAT PART B**

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Mice exposed at up to 3000 ppm PGMEA 6 hr/day for a total of 9 days during an 11-day period showed no pronounced effect on the weights of liver, kidneys, heart, spleen, thymus or testes. Histopathological examination revealed degeneration of the olfactory epithelium in mice exposed at 300 ppm for the same time. Rats, similarly failed to show changes in internal organs and did not show olfactory epithelium degeneration until 3000 ppm. The no-effect level in rats was 1000 ppm.

Human overexposure to MIBK vapour may produce weakness, loss of appetite, headache, a burning sensation to the eyes, stomach-ache, nausea and vomiting. Sore throat, insomnia, somnolence, heartburn and intestinal pain have been reported by some workers. Tolerance is reported to be acquired over the workweek and lost during the weekend.

Exposure to high concentrations (>1000 ppm) can produce central nervous system depression and narcosis. Lower doses (80-500 ppm) can cause weakness, headache and nausea.

Rats, mice, dogs and monkeys that inhaled 100 or 200 ppm MIBK 24 hrs/day showed no outward adverse effects during 2 weeks of exposure. At 200 ppm rats showed increased absolute liver and kidney weights and increased organ-to-body weight ratios. Examination of the proximal tubules showed toxic nephrosis (hyaline droplet degeneration and occasional focal tubular necrosis) in rats exposed to 100 ppm. This damage was considered transient and reversible. Discriminatory behaviour and memory in baboons was effected at exposures of 50 ppm for 7 days.

Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue.

Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Considered an unlikely route of entry in commercial/industrial environments The liquid may produce considerable gastrointestinal discomfort and may be harmful or toxic if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis

Skin contact with the material may be harmful; systemic effects may result following absorption.

The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either

- produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin Contact

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Repeated application of commercial grade PGMEA to the skin of rabbits for 2-weeks caused slight redness and very slight exfoliation. Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight conjunctival redness and slight corneal injury in rabbits

At concentrations of 100-200 ppm MIBK, the vapour may irritate the eyes and respiratory tract

The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or

Chronic

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) (1000 ppm and above) causes mild liver and kidney damage in animals.

A minor component, 2-methoxy-1-propyl acetate (the beta-isomer) produced birth defects on inhalation exposure of pregnant rabbits at 545 ppm, but not at 145 or 36 ppm; maternal and embryo/foetal toxicity on inhalation exposure of pregnant rats at 2710 ppm, but not at 545 or 110 ppm; and no adverse effects on dermal exposure of pregnant rabbits at applied dosages of 1000 and 2000 mg/kg of body weight per day during the critical period or embryo/foetal development. In a further study, no developmental effects were seen following exposure of pregnant rats at air concentrations of commercial propylene glycol monomethyl ether acetate (containing 3-5% of the minor component) up to 4000 ppm; slight maternal effects were seen at 5000 ppm and greater. Exposure of pregnant rats and rabbits to the parent glycol ether, propylene glycol monomethyl ether which contained comparable amounts of the primary isomer, 2-methoxy-1-propanol, did not produce teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rat foetuses but not in rabbit foetuses at this concentration and maternal toxicity was noted in both species at this concentration

Continued...

Chemwatch: 43043 Page 12 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates. [CCTRADE-Bayer, APMF]

A 90-day inhalation study in rats with polymeric MDI (6 hours/day, 5 days/week) produced moderate to severe hyperplastic inflammatory lesions in the nasal cavities and lungs at levels of 8 mg/m3 or greater.

Experiments with rats exposed to MIBK have shown nerve changes characteristic of neuropathy (disease of the peripheral nerves usually causing weakness and numbness).

Chronic occupational exposure to 500 ppm MIBK in air (20-30 mins/day, and 80 ppm for the remainder of the workday resulted in nausea, headache, burning eyes, and weakness in over half the workers. Some workers reported somnolence, insomnia and intestinal pain, and 4/19 appeared to have enlarged livers. This study was continued 5 years after MIBK concentrations had been reduced to 100-105 ppm for the 20-30 minutes exposures and 50 ppm for the general exposure. A few workers still experienced gastrointestinal and neurological problems and slight liver enlargement was found in two individuals

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions. Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

CONTAINS free organic isocyanate. Mixing and application requires special precautions and use of personal protective gear [APMF]

WESTOX AP	TOXICITY	IRRITATION	
GLAZECOAT PART B	Not Available	Not Available	
	TOXICITY	IRRITATION	
hexamethylene	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Skin (rabbit): 500 mg - moderate	
diisocyanate polymer	Inhalation (rat) LC50: 4.625 mg/l/1he ^[2]		
	Oral (rat) LD50: >10000 mg/kg ^[2]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant	
xylene	Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE	
	Oral (rat) LD50: 4300 mg/kg ^[2]	Eye (rabbit): 87 mg mild	
		Skin (rabbit):500 mg/24h moderate	
	TOXICITY	IRRITATION	
propylene glycol monomethyl	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available	
ether acetate, alpha-isomer	Inhalation (rat) LC50: 6510.0635325 mg/l/6h ^[2]		
	Oral (rat) LD50: >5000 mg/kg ^[1]		
	TOXICITY	IRRITATION	
	Oral (rat) LD50: 2080 mg/kg ^[2]	Eye (human): 200 ppm/15m	
methyl isobutyl ketone		Eye (rabbit): 40 mg - SEVERE	
		Eye (rabbit): 500 mg/24h - mild	
		Skin (rabbit): 500 mg/24h - mild	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: 570 mg/kg ^[1]	Not Available	
hexamethylene diisocyanate	Inhalation (rat) LC50: 0.06 mg/l/4h ^[2]		
	Oral (rat) LD50: 738 mg/kg ^[2]		
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		
HEXAMETHYLENE DIISOCYANATE POLYMER	The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. * Bayer SDS ** Ardex SDS		
XYLENE	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Reproductive effector in rats		

Chemwatch: 43043 Page 13 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycolbased ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to nonirritating None are skin sensitisers.

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB - 13 wk) and 450 mg/kg-d (DPnB - 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested). Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. In vitro, negative results have been seen in a number of assays for PnB, DPnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic in vivo. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects.

The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I]

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For methyl isobutyl ketone (MIBK):

MIBK is primarily absorbed by the lungs in animals and humans; it can however be absorbed by the gastrointestinal system and through skin. In two cases involving individuals exposed to the vapour MIBK was found in the brain, liver, lung, vitreous fluid, kidney and blood. Experiments in guinea pigs show that MIBK is metabolised to 4-hydroxy-4-methyl-2-pentanone and 4-methyl-2-pentanol. Ketones are generally excreted rapidly in expired air. Small amounts of MIBK are also excreted in the urine. Humans excreted less than 0.1% of the dose as unmetabolised MIBK in the urine within the first 3 hours post exposure. Serum half-life in guinea pigs is about 55 minutes with a clearance time of 6 hours

In animal studies, the acute systemic toxicity of MIBK, via the oral and inhalation routes of exposure, is low. In a 90-day gavage study on rats, a no-observed-effect level (NOEL) of 50 mg/kg per day was found. In 90-day inhalation studies on rats and mice, concentrations of up to 4100 mg/m3 (1000 ppm) did not result in significant toxicity, though compound-related reversible morphological changes were reported in the liver and kidney. Evidence of central nervous system depression was seen in animals exposed to a level of 4100 mg/m3 (1000 ppm). In a number of studies, exposure to MIBK concentrations as low as 1025 mg/m3 (250 ppm) resulted in an increase in liver size and induced hepatic microsomal metabolism. This may be responsible for the exacerbation of haloalkane toxicity and for the potentiation of the neurotoxicity of n-hexane. MIBK was also found to potentiate the cholestatic effects of manganese given with, or without, bilirubin. In 90-day studies on mice, rats, dogs, and monkeys, only male rats developed hyaline droplets in the proximal tubules of the kidney. Effects on behaviour were reported in baboons exposed for 7 days to 205 mg/m3 (50 ppm). At a concentration of 4100 mg/m3 (1000 ppm), MIBK was not embryotoxic, foetotoxic, or teratogenic in rats or mice. Foetotoxicity was only observed at concentrations of MIBK that caused maternal toxicity. MIBK did not induce gene mutations in in vitro bacterial test systems with, or without, metabolic activation. Negative results were also obtained in vitro with, or without, metabolic activation, in tests for mitotic gene conversion in yeast, and for gene mutation in cultured mammalian cells. The results of in vitro assays for unscheduled DNA synthesis in primary rat hepatocytes and for structural chromosome damage in cultured rat liver cells were negative. An in vivo micronucleus test on mice was negative. These data indicate that MIBK is not genotoxic. No long-term or carcinogenicity studies are available. The toxicity of MIBK for aquatic organisms and microorganisms is low.

METHYL ISOBUTYL KETONE

Chemwatch: 43043 Page 14 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

No significant acute toxicological data identified in literature search.

for 1,6-hexamethylene diisocyanate:

Exposures to HDI are often associated with exposures to its prepolymers, especially to a trimeric biuretic prepolymer of HDI (HDI-BT), which is widely used as a hardener in automobile and airplane paints, and which typically contains 0.5-1% unreacted HDI. There is evidence that diisocyanate prepolymers may induce asthma at the same or greater frequency as the monomers; therefore, there is a need to assess the potential for human exposure to prepolymeric HDI as well as monomeric HDI.

- 1,6-Hexamethylene diisocyanate is corrosive to the skin and the eye.
- 1,6-Hexamethylene diisocyanate was found to induce dermal and respiratory sensitization in animals and humans. There is no threshold known for this effect.

Inhalation studies with repeated exposures to 1,6-hexamethylene diisocyanate vapor show that the respiratory tract is the target with 1,6-hexamethylene diisocyanate showing primarily upper respiratory tract lesions (nasal cavity). 1,6-Hexamethylene diisocyanate did not show a neurotoxic effect in a combined reproduction/developmental/neurotoxicity study. Life-time inhalation exposure to rats revealed a progression of non-neoplastic respiratory tract lesions, primarily to the nasal cavity, and represented the sequelae of non-specific irritation. Based on the presence of only reversible tissue responses to irritation at the low concentration of 0.005 ppm, this concentration was a NOAEL. No carcinogenic potential in rats was observed after life-time inhalation. 1,6-Hexamethylene diisocyanate showed no mutagenic activity in vitro in bacterial and in mammalian cell test systems.

- 1,6-Hexamethylene diisocyanate showed no clastogenic activity in vivo.
- 1,6-Hexamethylene diisocyanate has no effect on fertility and post-natal viability through post-natal day 4 in the rat after inhalation up to 0.299 ppm. The overall NOEL was 0.005 ppm.

Inhalation of 1,6-hexamethylene diisocyanate during the pregnancy of rats produced maternal effects (nasal turbinate histopathology) at concentrations ³ 0.052 ppm. No developmental toxicity was observed up to 0.308 ppm.

for diisocyanates:

In general, there appears to be little or no difference between aromatic and aliphatic diisocyanates as toxicants. In addition, there are insufficient data available to make any major distinctions between polymeric (<1000 MW) and monomeric diisocyanates. Based on repeated dose studies in animals by the inhalation route, both aromatic and aliphatic diisocyanates appear to be of high concern for pulmonary toxicity at low exposure levels. Based upon a very limited data set, it appears that diisocyanate prepolymers exhibit the same respiratory tract effects as the monomers in repeated dose studies. There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route. Most members of the diisocyanate category have not been tested for carcinogenic potential. Though the aromatic disocyanates tested positive and the one aliphatic disocyanate tested negative in one species, it is premature to make any generalizations about the carcinogenic potential of aromatic versus aliphatic dijsocyanates. In the absence of more human data, it would be prudent at this time to assume that both aromatic and aliphatic diisocyanates are respiratory sensitisers. Diisocyanates are moderate to strong

HEXAMETHYI ENE DIISOCYANATE

dermal sensitisers in animal studies. Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates.

For monomers, effects on the respiratory tract (lungs and nasal cavities) were observed in animal studies at exposure concentrations of less than 0.005 mg/L. The experimental animal data available on prepolymeric diisocyanates show similar adverse effects at levels that range from 0.002 mg/L to 0.026 mg/L.

There is also evidence that both aromatic and aliphatic diisocyanates are acutely toxic via the inhalation route

Oncogenicity: Most members of the diisocyanate category have not been tested for carcinogenic potential. Commercially available Poly-MDI was tested in a 2-year inhalation study in rats. The tested material contained 47% aromatic 4,4'-methylenediphenyl diisocyanate (MDI) and 53% higher molecular weight oligomers. Interim sacrifices at one year showed that males and females in the highest dose group (6 mg/m3) had treatment related histological changes in the nasal cavity, lungs and mediastinal lymph nodes. The incidence and severity of degeneration and basal cell hyperplasia of the olfactory epithelium and Bowman's gland hyperplasia were increased in males at the mid and high doses and in females at the high dose following the two year exposure period. Pulmonary adenomas were found in 6 males and 2 females, and pulmonary adenocarcinoma in one male in the high dose group. However, aliphatic hexamethylene diisocyanate (HDI) was found not to be carcinogenic in a two year repeated dose study in rats by the inhalation route. HDI has not been tested in mice by the inhalation route

Though the oral route is not an expected route of exposure to humans, it should be noted that in two year repeated dose studies by the oral route, aromatic toluene diisocyanate (TDI) and 3,3'-dimethoxy-benzidine-4,4'-diisocyanate (dianisidine diisocyanate, DADI) were found to be carcinogenic in rodents. TDI induced a statistically significant increase in the incidence of liver tumors in rats and mice as well as dose-related hemangiosarcomas of the circulatory system and has been classified by the Agency as a B2 carcinogen. DADI was found to be carcinogenic in rats, but not in mice, with a statistically increase in the incidence of pancreatic tumors observed.

Respiratory and Dermal Sensitization: Based on the available toxicity data in animals and epidemiologic studies of humans, aromatic diisocyanates such as TDI and MDI are strong respiratory sensitisers. Aliphatic discovanates are generally not active in animal models for respiratory sensitization. However, HDI and possibly isophorone diisocyanate (IPDI), are reported to be associated with respiratory sensitization in humans. Symptoms resulting from occupational exposure to HDI include shortness of breath, increased bronchoconstriction reaction to histamine challenges, asthmatic reactions, wheezing and coughing. Two case reports of human exposure to IPDI by inhalation suggest IPDI is a respiratory sensitiser in humans. In view of the information from case reports in humans, it would be prudent at this time to assume that both aromatic and aliphatic disocvanates are respiratory sensitisers. Studies in both human and mice using TDI, HDI, MDI and dicyclohexylmethane-4,4'-diisocyanate (HMDI) suggest cross-reactivity with the other diisocyanates, irrespective of whether the challenge compound was an aliphatic or aromatic diisocyanate. Diisocyanates are moderate to strong dermal sensitisers in animal studies. There seems to be little or no difference in the level of reactivity between aromatic and aliphatic diisocvanates. **Dermal Irritation:** Skin irritation studies performed on rabbits and guinea pigs indicate no difference in the effects of aromatic versus aliphatic diisocyanates. The level of irritation ranged from slightly to severely irritating to the skin. One chemical, hydrogenated MDI (1,1-methylenebis-4isocyanatocyclohexane), was found to be corrosive to the skin in guinea pigs.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

HEXAMETHYLENE DIISOCYANATE POLYMER & HEXAMETHYLENE DIISOCYANATE

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

Isocyanate vapours/mists are irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis with wheezing, gasping and severe distress, even sudden loss of consciousness, and pulmonary oedema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterised by nausea and vomiting. Pulmonary sensitisation may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning after a period of tolerance. A respiratory response may occur following minor skin contact. Skin sensitisation is possible and may result in allergic dermatitis responses including rash, itching, hives and swelling of extremities. Isocyanate-containing vapours/ mists may cause inflammation of eyes and nasal passages.

Onset of symptoms may be immediate or delayed for several hours after exposure. Sensitised people can react to very low levels of airborne isocyanates. Unprotected or sensitised persons should not be allowed to work in situations allowing exposure to this material.

Chemwatch: 43043 Page 15 of 19 Issue Date: 14/03/2024 Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Print Date: 14/03/2024

HEXAMETHYLENE **DIISOCYANATE POLYMER &** XYLENE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

METHYL ISOBUTYL KETONE & HEXAMETHYLENE DIISOCYANATE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe

bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included

in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	~
Skin Irritation/Corrosion	✓	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	v
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	~

Legend:

X – Data available but does not fill the criteria for classification

– Data available to make classification

N - Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
WESTOX AP GLAZECOAT PART B	Not Available	Not Available	Not Available	Not Available	Not Available
hexamethylene diisocyanate	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
polymer	Not Available	Not Available	Not Available	Not Available	Not Available
_	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	2.6mg/L	2
xylene	EC50	48	Crustacea	>3.4mg/L	2
	EC50	72	Algae or other aquatic plants	4.6mg/L	2
	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	=100mg/L	1
propylene glycol monomethyl ether acetate, alpha-isomer	EC50	48	Crustacea	=408mg/L	1
	EC0	24	Crustacea	=500mg/L	1
	NOEC	336	Fish	47.5mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	>179mg/L	2
methyl isobutyl ketone	EC50	48	Crustacea	=170mg/L	1
	EC50	96	Algae or other aquatic plants	=400mg/L	1
	NOEC	504	Crustacea	30mg/L	2
-	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	22mg/L	1
hexamethylene diisocyanate	EC50	72	Algae or other aquatic plants	>77.4mg/L	2
	EC0	24	Crustacea	<0.33mg/L	1
	NOEC	72	Algae or other aquatic plants	11.7mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms

Hydrolysis would represents the primary fate mechanism for the majority of the commercial isocyanate monomers, but, is tempered somewhat by the lack of water solubility. In the absence of hydrolysis, sorption to solids (e.g., sludge and sediments) will be the primary mechanism of removal. Hydrolysis products are predominantly insoluble stable polyureas.

Biodegradation is minimal for most compounds and volatilisation is negligible. Atmospheric degradation is not expected with removal from air occurring by washout or dry deposition. Volatilisation from surface waters (e.g., lakes and rivers) is expected to take years. In wastewater treatment this process is not expected to be significant.

Review of the estimated properties of the isocyanates suggest that sorption is the primary removal mechanism in the ambient environment and in wastewater treatment in the absence of significant hydrolysis.

Sorption to solids in wastewater treatment is considered strong to very strong for most compounds. Sorption to sediments and soils in the ambient environment is very strong in most

Chemwatch: 43043 Page 16 of 19

Version No: 7.1.1.1 WESTOX AP GLAZECOAT PART B

Issue Date: 14/03/2024
Print Date: 14/03/2024

instances. Migration to groundwater and surface waters is not expected due to sorption or hydrolysis.

Hydrolysis of the N=C=O will occur in less than hours in most instances and within minutes for more than 90% of the commercial isocyanates. However, the low to very low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates. Aerobic and/or a naerobic biodecardation of the isocyanates is not expected to occur at significant levels. Most of the substances take several months to degrade.

Degradation of the hydrolysis products will occur at varying rates depending on the moiety formed.

for propylene glycol ethers:

Environmental fate:

Most are liquids at room temperature and all are water-soluble

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM) Environmental fate: Log octanol-water partition coefficients (log Kow's) range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 0.316 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants, which indicate propensity to partition from water to air, are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for PnB. Fugacity modeling indicates that most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). Propylene glycol ethers are unlikely to persist in the environment. Once in air, the half-life of the category members due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. In water, most members of this family are "readily biodegradable" under aerobic conditions. (DPMA degraded within 28 days (and within the specified 10-day window) but only using pre-adapted or "accilimated" inoculum.). In soil, biodegradation is rapid for PM and PMA.

Ecotoxicity:

Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For ethers, effect concentrations are > 500 mg/L. For acetates, effect concentrations are > 151 mg/L.

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shriming (Palaemonetes pugio) and brown shriming (Penaeus aztecus) was dimethylnaphthalenes > naphthalenes > naphthalenes. Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene.

The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthroene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
hexamethylene diisocyanate polymer	HIGH	HIGH
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW
methyl isobutyl ketone	HIGH (Half-life = 7001 days)	LOW (Half-life = 1.9 days)
hexamethylene diisocyanate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
hexamethylene diisocyanate polymer	LOW (LogKOW = 7.5795)
xylene	MEDIUM (BCF = 740)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)
methyl isobutyl ketone	LOW (LogKOW = 1.31)
hexamethylene diisocyanate	LOW (LogKOW = 3.1956)

Mobility in soil

Ingredient	Mobility
hexamethylene diisocyanate polymer	LOW (KOC = 18560000)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)
methyl isobutyl ketone	LOW (KOC = 10.91)
hexamethylene diisocyanate	LOW (KOC = 5864)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

Containers may still present a chemical hazard/ danger when empty.
 Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- Reuse
- ▶ Recycling

Chemwatch: **43043**Version No: **7.1.1.1**

Page 17 of 19 WESTOX AP GLAZECOAT PART B

Issue Date: 14/03/2024 Print Date: 14/03/2024

Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

NO

•3Y

Marine Pollutant
HAZCHEM

Land transport (ADG)

UN number	1866
UN proper shipping name	RESIN SOLUTION, flammable
Transport hazard class(es)	Class 3 Subrisk Not Applicable
Packing group	III
Environmental hazard	Not Applicable
Special precautions for user	Special provisions 223 Limited quantity 5 L

Air transport (ICAO-IATA / DGR)

All transport (load lata / bott)				
UN number	1866			
UN proper shipping name	Resin solution flammable	Resin solution flammable		
	ICAO/IATA Class	3		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	3L		
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions		A3	
	Cargo Only Packing Instructions		366	
	Cargo Only Maximum Qty / Pack		220 L	
	Passenger and Cargo Packing Instructions		355	
	Passenger and Cargo Maximum Qty / Pack		60 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y344	
	Passenger and Cargo	Limited Maximum Qty / Pack	10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1866	
UN proper shipping name	RESIN SOLUTION flammable	
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable	
Packing group	III	
Environmental hazard	Not Applicable	

Version No: 7.1.1.1

WESTOX AP GLAZECOAT PART B

Issue Date: 14/03/2024 Print Date: 14/03/2024

Special precautions for user

F-E, S-E **EMS Number** Special provisions 223 955 **Limited Quantities**

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

HEXAMETHYLENE DIISOCYANATE POLYMER(28182-81-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP)

Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6

Australia Work Health and Safety Regulations 2016 - Hazardous chemicals (other than lead) requiring health monitoring

XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY

LISTS Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous

Chemicals Australia Hazardous chemicals which may require Health

Monitoring Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Part 2, Section Seven - Appendix I

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Schedule 7 International Agency for Research on Cancer (IARC) - Agents Classified by the

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER(108-65-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

IARC Monographs

METHYL ISOBUTYL KETONE(108-10-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous

Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

HEXAMETHYLENE DIISOCYANATE(822-06-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6

Australia Work Health and Safety Regulations 2016 - Hazardous chemicals (other than lead) requiring health monitoring

National Inventory Status

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (propylene glycol monomethyl ether acetate, alpha-isomer; xylene; methyl isobutyl ketone; hexamethylene diisocyanate)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (hexamethylene diisocyanate polymer)
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	Y
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	14/03/2024
Initial Date	22/05/2002

Chemwatch: 43043 Page 19 of 19 Issue Date: 14/03/2024

Version No: 7.1.1.1 Print Date: 14/03/2024 **WESTOX AP GLAZECOAT PART B**

Ingredients with multiple cas numbers

Name	CAS No
hexamethylene diisocyanate polymer	28182-81-2, 53200-31-0, 1192214-73-5
propylene glycol monomethyl ether acetate, alpha-isomer	108-65-6, 84540-57-8, 142300-82-1

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.