Safety Data Sheet

E S T O BUILDING PRODUCTS

WESTOX WATER REPELLENT

Date of Issue 01/09/2024 Date of Revision 10/04/2025

1 - IDENTIFICATION		
Product Name	WESTOX WATER REPELLENT	
Synonyms	Not Available	
Proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains naphtha)	petroleum, heavy, hydrotreated)
Recommended Use	Water repellent for concrete-cement and inorga	anic substrates.
Relevant identified uses	Water repellant. Use according to manufacturer's directions.	
Company Details Address Phone Email Website	Westlegate Pty Ltd 16 Frost Road Campbelltown NSW 2560 Australia 61 2 4628 5010 info@westox.com www.westox.com	
Emergency Contact Point	Australian Poisons Information Centre 24 Hour Service Police, Fire Brigade or Ambulance New Zealand Poisons Information Centre 24 Hour Service NZ Emergency Services	13 11 26 000 0800 764 766 111
2 - HAZARD(S) IDENTIFICATION		

Poisons Schedule	S5
Classification	Flammable Liquid Category 3 Reproductive Toxicity Category 1B Specific target organ toxicity - single exposure Category 3 (narcotic effects) Aspiration Hazard Category 1 Acute Aquatic Hazard Category 3

Legend: 1. Classification drawn from HCIS; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Pictogram(s)

	V V V
SIGNAL WORD	DANGER
Hazard statement(s)	 H226 Flammable Liquid & Vapour H360Fd May damage fertility. May damage the unborn child. H336 May cause drowsiness or dizziness. H304 May be fatal if swallowed and enters airways. H402 Harmful to aquatic life. AUH066 Repeated exposure may cause skin dryness and cracking.
Precautionary statement(s)	 P201 Obtain special instructions before use. P210 Keep away from heat/sparks/open flames/hot surfaces No smoking. P271 Use only outdoors or in a well-ventilated area. P280 Wear protective gloves/protective clothing/eye protection/face protection. P240 Ground/bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. P242 Use only non-sparking tools. P243 Take precautionary measures against static discharge. P261 Avoid breathing mist/vapours/spray. P273 Avoid release to the environment.

Precautionary statement(s) response	 P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. P308+P313 IF exposed or concerned: Get medical advice/attention. P331 Do NOT induce vomiting. P370+P378 In case of fire: Use alcohol resistant foam or normal protein foam for extinction. P312 Call a POISON CENTER or doctor/physician if you feel unwell. P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
Precautionary statement(s) Storage	P403+P235 Store in a well-ventilated place. Keep cool. P405 Store locked up.
Precautionary statement(s) Disposal	P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

3 - COMPOSITION AND INFORMATION ON INGREDIENTS

Name	CAS Number	Content %
naphtha petroleum, heavy, hydrotreated di-n-octyl tin dilaurate	64742-48-9. 3648-18-8	<90 <10

4 - FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	 If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.
Indication of any imm	ediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore, emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For acute or short term repeated exposures to organic tin compounds:

- Severe exposure results in tinnitus, deafness, memory loss, psychosis, coma, disorientation and respiratory depression after a latent period of 1-3 days.
- Permanent neurologic sequelae include extrapyramidal hyperkinesia.
- The material produces ervthematous skin lesions.
- Management is primarily supportive.
- British Anti-Lewisite and d-penacillamine are not effective as chelators. [Ellenhorn and Barceloux: Medical Toxicology]

For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.

Westox Water Repellent Page 2 Of 17

- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary
 oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone
 marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery
 from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

[Ellenhorn Barceloux: Medical Toxicology]

BIOLOGICAL EXPOSURE INDEX - BEI

B: Background levels occur in specimens collected from subjects **NOT** exposed.

NS: Non-specific determinant - observed following exposure to other materials.

5 - FIREFIGHTING MEASURES

Extinguishing media

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) metal oxides other pyrolysis products typical of burning organic material.
HAZCHEM	•3Y
6 - ACCIDENTAL RELEAS	SE MEASURES
Personal precautions, pro	otective equipment and emergency procedures

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Westox Water Repellent

- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place). •
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- ►
- Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains. •
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

7 - HANDLING AND STORAGE

Precautions for safe handling

Safe handling	 Containers, even those that have been emptied, may contain explosive vapours. Do NOT cut, drill, grind, weld or perform similar operations on or near containers. DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of overexposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid generation of static electricity.
	 DO NOT use plastic buckets. Earth all lines and equipment. Use spark-free tools when handling. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
Other information	 Store in original containers in approved flammable liquid storage area. Store away from incompatible materials in a cool, dry, well-ventilated area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access. Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and flammable gas detectors. Keep adsorbents for leaks and spills readily available. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): Store in grounded, properly designed and approved vessels and away from incompatible materials. For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. Storage tanks should be above ground and diked to hold entire contents.
Conditions for safe stor	age, including any incompatibilities
Suitable container	 Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid. Check that containers are clearly labelled and free from leaks. For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.

Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages.

In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close-fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Avoid strong acids, bases.Avoid reaction with oxidising agents.

8 - EXPOSURE CONTROLS AND PERSONAL PROTECTION

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	naphtha petroleum, heavy, hydrotreated	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	di-n-octyl tin dilaurate	Tin, organic compounds (as Sn)	0.1 mg/m3	0.2 mg/m3	Not Available	(g) Some compounds in these groups are classified as carcinogenic or as sensitisers. Check individual classification details on the safety data sheet for information on classification.

Emergency Limits

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
naphtha petroleum, heavy, hydrotreated	Naphtha, hydrotreated heavy; (Isopar L-rev 2)	350 mg/m3	1,800 mg/m3	40,000 mg/m3

Ingredient	Original IDLH	Revised IDLH
naphtha petroleum, heavy, hydrotreated	2,500 mg/m3	Not Available
di-n-octyl tin dilaurate	25 mg/m3	Not Available

MATERIAL DATA

Odour threshold: 0.25 ppm.

The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties. Odour Safety Factor (OSF)

OSF=0.042 (gasoline)

Exposure limits with "skin" notation indicate that vapour and liquid may be absorbed through intact skin. Absorption by skin may readily exceed vapour inhalation exposure. Symptoms for skin absorption are the same as for inhalation. Contact with eyes and mucous membranes may also contribute to overall exposure and may also invalidate the exposure standard.

The no/lowest-observed-adverse-effect levels (NOAELs or LOAELs) in inhalation studies involving tri-n-butyltin chloride and bromide are 0.3-0.4 ppm (2-4 mg/m3) based on changes in the lungs, heart, liver, kidneys, nervous system and reproductive system in rodents. Oral administration of organotin compounds has induced toxicity in a number of differing organ systems, organs and lungs. The LOAEL for triethyltin bromide was 0.4 mg triethyltin/kg/day as 5 ppm in drinking water. The LOAELs for the most critical organ sites in rats (i.e. the cellular immune response and CNS effects) are 0.15 and 0.23 mg/tin/kg body weight/day. Experience with ingested tri- and diethyltins in the treatment of staphylococcal infections, osteomyelitis, anthrax and acne suggests that humans react in a manner similar to rodents, but that the human is more sensitive to absorbed organic tin. The recommended TLV-TWA is thought to minimise the potential for adverse effects on immune function and the central nervous system. A STEL is also recommended to minimise acute symptoms such as eye and respiratory tract irritation, headaches and/or nausea. Based on an exposure to 0.1 mg/m3, a 70-kg worker breathing 10 m3 of air/8hr workday and assuming complete retention of the inhaled dose, would receive a daily exposure of 14.3 ug tin/kg body weight of an organotin compound. A skin notation was recommended based on animal data and the potential danger of enhanced absorption due to damaged skin present in many exposed workers.

NOTE H: Special requirements exist in relation to classification and labelling of this substance. This note applies to certain coal- and oil -derived substances and to certain entries for groups of substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Engineering Controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant	Air Speed
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25–0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore, the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin/hands/feet protection

Wear chemical protective gloves, e.g. PVC.

Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
 - Good when breakthrough time > 20 min

Westox Water Repellent

Deer C of **17**

Page 6 of 17

- Fair when breakthrough time < 20 min
 - Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body/other protection

- Overalls.PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computergenerated* selection:

WESTOX WATER REPELLENT

Material	Rating
BUTYL	GOOD
BUTYL/NEOPRENE	GOOD
PE/EVAL/PE	GOOD
PVDC/PE/PVDC	GOOD
SARANEX-23	GOOD
SARANEX-23 2-PLY	GOOD
TEFLON	GOOD
VITON/NEOPRENE	GOOD
NEOPRENE	SATISFACTORY
NAT+NEOPR+NITRILE	POOR
NATURAL RUBBER	POOR
NATURAL+NEOPRENE	POOR
NEOPRENE/NATURAL	POOR
NITRILE	POOR
PVA	POOR
PVC	POOR

 Good
 Best Selection

 Satisfactory
 May degrade after 4 hours continuous immersion

Poor Poor to dangerous choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent).

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-face Respirator	Powered Air-Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2^

^ - Full-face

A (All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide (HCN), B3 = Acid gas or hydrogen cyanide (HCN), E = Sulfur dioxide (SO2), G = Agricultural chemicals, K = Ammonia (NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds (below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used.

9 - PHYSICAL AND CHEMICAL PROPERTIES

Appearance Clear highly flammable liquid; does not mix with water.

Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	59	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
,		-	

10 - STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

11 - TOXICOLOGICAL INFORMATION

Inhaled

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation hazard is increased at higher temperatures.

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce

Westox Water Repellent Page 8 of 17 inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations.

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Some aliphatic hydrocarbons produce axonal neuropathies. Isoparaffinic hydrocarbons produce injury to the kidneys of male rats. When albino rats were exposed to isoparaffins at 21.4 mg/l for 4 hours, all animals experienced weakness, tremors, salivation, mild to moderate convulsions, chromodacryorrhoea and ataxia within the first 24 hours. Symptoms disappeared after 24 hours.

Several studies have evaluated sensory irritation in laboratory animals or odor or sensory response in humans. When evaluated by a standard procedure to assess upper airway irritation, isoparaffins did not produce sensory irritation in mice exposed to up to 400 ppm isoparaffin in air.

Human volunteers were exposed for six hours to 100 ppm isoparaffin. The subjects were given a self-administered questionnaire to evaluate symptoms, which included dryness of the mucous membranes, loss of appetite, nausea, vomiting, diarrhea, fatigue, headache, dizziness, feeling of inebriation, visual disturbances, tremor, muscular weakness, impairment of coordination or paresthesia. No symptoms associated with solvent exposure were observed. With a human expert panel, odour from liquid imaging copier emissions became weakly discernible at approximately 50 ppm.

Numerous long-term exposures have been conducted in animals with only one major finding observed. Renal tubular damage has been found in kidneys of male rats upon repeated exposures to isoparaffins. It does not occur in mice or in female rats. This male rat nephropathy has been observed with a number of hydrocarbons, including wholly vaporized unleaded gasoline. The phenomenon has been attributed to reversible binding of hydrocarbon to alpha2-globulin. Since humans do not synthesize alpha2-globulin or a similar protein, the finding is not considered to be of biological significance to man. No clinically significant renal abnormalities have been found in refinery workers exposed to hydrocarbons.

When evaluated for developmental toxicity in rats, isoparaffins were neither embryotoxic nor teratogenic. Isoparaffins were consistently negative on standard bacterial genotoxicity assays. They were also non-genotoxic in *in vivo* mammalian testing for somatic or germ cell mutations (mouse micronucleus test and rat dominant lethal assay, respectively). Mullin et al: Jnl Applied Toxicology 10, pp 136-142, 2006

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Ingestion Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Accidental ingestion of the material may be damaging to the health of the individual.

Many aliphatic hydrocarbons create a burning sensation because they are irritating to the GI mucosa. Vomiting has been reported in up to one third of all hydrocarbon exposures. While most aliphatic hydrocarbons have little GI absorption, aspiration frequently occurs, either initially or in a semi-delayed fashion as the patient coughs or vomits, thereby resulting in pulmonary effects. Once aspirated, the hydrocarbons can create a severe pneumonitis.

Rats given isoparaffinic hydrocarbons (after 18-24 hours fasting) showed lethargy and/or general weakness, ataxia and diarrhoea. Symptoms disappeared within 24-28 hours.

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage. Considered an unlikely route of entry in commercial/industrial environments

Skin Contact Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Dermally, isoparaffins have produced slight to moderate irritation in animals and humans under occluded patch conditions

where evaporation cannot freely occur. However, they are not irritation in animals and numans under occuded patch conditions simulation of human exposure. They have not been found to be sensitisers in guinea pig or human patch testing. However, occasional rare idiosyncratic sensitisation reactions in humans have been reported.

Open cuts, abraded or irritated skin should not be exposed to this material.

Eye

The material may accentuate any pre-existing dermatitis condition.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Instillation of isoparaffins into rabbit eyes produces only slight irritation. Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Chronic There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: -

clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects.

Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, generally on the basis that results in appropriate animal studies provide strong suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Both tributyltins (TBT) and dibutyltins (DBT) have negative effects on the reproductive system in mammals. In line with these facts, TBT and TPT were given the highest category in a European review of endocrine disrupting chemicals (BKH, 2000): "Evidence for endocrine disruption in living organisms". TBT was also classified as "Evidence of potential to cause endocrine disruption in humans".

Organotins are also toxic by other mechanisms. For instance, several organotins are strongly immunosuppressive, display developmental and reproductive effects and are neurotoxic TPT is classified as category 3 carcinogenic in the EU, but as category 2 (probable human carcinogenic) by the USEPA (EFSA, 2004). DBT may actually be more toxic than TBT to certain enzyme systems. Immunotoxic and developmental effects in mammals may also be more sensitive to DBT than to TB. Both TBT and TPT may be classified as Persistent, Bioaccumulative and Toxic (PBT) and very Persistent,very Bioaccumulative (vPvB) substances according to certain, whereas DBT and dioctyl tin (DO)T may be classified as PBT.

For human health, there are no epidemiological studies on chronic low level exposure available. It has been suggested that toxicity was equal for DBT, TBT, DOT and TPT for humans, and proposed a group TDI of 0.1 ig Sn (kg Bw and d)-1. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses.

Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Animal studies:

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at non irritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure.

Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat.

Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils.

Steam-cracked residues produced an increased incidence of skin tumours after repeated applications to the skin of mice.

Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

WESTOX WATER REPELLENT	ΤΟΧΙΟΙΤΥ	IRRITATION	
WESTOX WATER REPELLENT	Not Available	Not Available	

	ΤΟΧΙΟΙΤΥ	IRRITATION			
naphtha petroleum, heavy, hydrotreated	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]			
	Inhalation (rat) LC50: 8.5 mg/l/4H ^[2]	Skin: adverse effect observed (irritating) ^[1]			
	Oral (rat) LD50: >4500 mg/kg ^[1]				
	ΤΟΧΙΟΙΤΥ	IRRITATION			
di-n-octyl tin dilaurate	Dermal (rat) LD50: >=2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]			
	Oral (rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]			

Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

NAPHTHA PETROLEUM,
HEAVY, HYDROTREATED

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain

Westox Water Repellent Page **10** of **17** length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. for petroleum:

Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline.

This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic.

This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss.

This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents **Carcinogenicity:** Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. **Mutagenicity:** There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays.

Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed.

Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans.

DI-N-OCTYL TIN DILAURATE

For aliphatic fatty acids (and salts) Acute oral (gavage) toxicity: The acute oral LD50 values in rats for both were greater than >2000 mg/kg bw.

Clinical signs were generally associated with poor condition following administration of high doses (salivation, diarrhoea, staining, piloerection and lethargy). There were no adverse effects on body weight in any study In some studies, excess test substance and/or irritation in the gastrointestinal tract was observed at necropsy. Skin and eye irritation potential, with a few stated exceptions, is chain length dependent and decreases with increasing chain length According to several OECD test regimes the animal skin irritation studies indicate that the C6-10 aliphatic acids are severely irritating or corrosive, while the C12 aliphatic acid is irritating, and the C14-22 aliphatic acids generally are not irritating or mildly irritating. Human skin irritation studies using more realistic exposures (30-minute,1-hour or 24-hours) indicate that the aliphatic acids have sufficient, good or very good skin compatibility. Animal eye irritation studies indicate that among the aliphatic acids, the C8-12 aliphatic acids are irritating to the eye while the C14-22 aliphatic acids are not irritating. Eye irritation potential of the ammonium salts does not follow chain length dependence; the C18 ammonium salts are corrosive to the eyes. Dermal absorption: The in vitro penetration of C10, C12, C14, C16 and C18 fatty acids (as sodium salt solutions) through rat skin decreases with increasing chain length. At 86.73 ug C16/cm2 and 91.84 ug C18/cm2, about 0.23% and less than 0.1% of the C16 and C18 soap solutions is absorbed after 24 h exposure, respectively. Sensitisation: No sensitisation data were located. Repeat dose toxicity: Repeated dose oral (gavage or diet) exposure to aliphatic acids did not result in systemic toxicity with NOAELs greater than the limit dose of 1000 mg/kg bw. . Mutagenicity Aliphatic acids do not appear to be mutagenic or clastogenic in vitro or in vivo Carcinogenicity No data were located for carcinogenicity of aliphatic fatty acids. Reproductive toxicity No effects on fertility or on reproductive organs, or developmental effects were observed in studies on aliphatic acids and the NOAELs correspond to the maximum dose tested. The weight of evidence supports the lack of reproductive and developmental toxicity potential of the aliphatic acids category. Given the large number of substances in this category, their closely related chemical structure, expected trends in physical chemical properties, and similarity of toxicokinetic properties, both mammalian and aquatic endpoints were filled using read-across to the closest structural analogue, and selecting the most conservative supporting substance effect level. Structure-activity relationships are not evident for the mammalian toxicity endpoints. That is, the low mammalian toxicity of this category of substances limits the ability to discern structural effects on biological activity. Regardless, the closest structural analogue with the most conservative effect value was selected for read across. Irritation is observed for chain lengths up to a cut-off" at or near 12 carbons). Metabolism: The aliphatic acids share a common degradation pathway in which they are metabolized to acetyl-CoA or other key metabolites in all living systems. Common biological pathways result in structurally similar breakdown products, and are, together with the physico-chemical properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health. Differences in metabolism or biodegradability of even and odd numbered carbon chain compounds or saturated/ unsaturated compounds are not expected; even-and odd-numbered carbon chain compounds, and the saturated and unsaturated compounds are naturally occurring and are expected to be metabolized and biodegraded in the same manner. The acid and alkali salt forms of the homologous aliphatic acid are expected to have many similar physicochemical and toxicological properties when they become

> Westox Water Repellent Page **11** Of **17**

bioavailable; therefore, data read across is used for those instances where data are available for the acid form but not the salt, and vice versa. In the gastrointestinal tract, acids and bases are absorbed in the undissociated (non-ionised) form by simple diffusion or by facilitated diffusion. It is expected that both the acids and the salts will be present in (or converted to) the acid form in the stomach. This means that for both aliphatic acid or aliphatic acid salt, the same compounds eventually enter the small intestine, where equilibrium, as a result of increased pH, will shift towards dissociation (ionised form).

Hence, the situation will be similar for compounds originating from acids and therefore no differences in uptake are anticipated Note that the saturation or unsaturation level is not a factor in the toxicity of these substances and is not a critical component of the read across process.

Toxicokinetics: The turnover of the [14C] surfactants in the rat showed that there was no significant difference in the rate or route of excretion of 14C given by intraperitoneal or subcutaneous administration. The main route of excretion was as 14CO2 in the expired air at 6 h after administration. The remaining material was incorporated in the body. Longer fatty acid chains are more readily incorporated than shorter chains.

At ca. 1.55 and 1.64 mg/kg bw, 71% of the C16:0 and 56% of the C18:0 was incorporated and 21% and 38% was excreted as 14CO2, respectively.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	× .
Serious Eye Damage/Irritation	×	STOT - Single Exposure	× .
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	× .

Legend: X- Data either not available or does not fill the criteria for classification

Data available to make classification

12 - ECOLOGICAL INFORMATION

Toxicity

WESTOX WATER REPELLENT	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
					1
naphtha petroleum, heavy, hydrotreated	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	4.1mg/L	2
	EC50	48	Crustacea	4.5mg/L	2
	EC50	72	Algae or other aquatic plants	>1-mg/L	2

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>0.09mg/L	2
di-n-octyl tin dilaurate	EC50	48	Crustacea	>0.21mg/L	2
	EC50	72	Algae or other aquatic plants	>0.002mg/L	2
	NOEC	72	Algae or other aquatic plants	0.001mg/L	2

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water. Oils of any kind can cause:

- drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows: (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;

(2) isoalkanes;

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL . Above the retention capacity, the NAPL becomes mobile and will move within the soil.

Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances.

Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13-C15 isoalkanes, C12 alkenes, C12-C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12-C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs.

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however, one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish. In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal.

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish.

Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, this study used nominal concentrations and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined. The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L.

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure.

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded.

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality.

Organotin compounds are characterized by a Sn4+ ion to which one to four organic ligands are attached. They are classified according to the type of organic ligand and the most common are butyltins, octyltins och phenyltins.

A large number of organtin substances are used in the society, and some of these are well-known environmental pollutants. The butyltins comprise on such group. Eco toxicity increases dramatically in the order methylbutyltin (MBT, RSn) < dibutyltin (DBT, R2Sn) < tributyltin (TBT, R3Sn) for certain endpoints.

Degradation of organotin compounds involves the breaking of the tin-carbon bond, which may occur by UV irradiation, or by biological or chemical cleavage. In water, for example, tributyltin can be degraded by photochemical and biological processes relatively rapidly; however, adsorption onto suspended particulate material in water followed by sedimentation is a key removal process. The adsorption behavior of Sn4+ ion and eight organotin species (tri-, di-, and monobutyltin; tri-, di-, and monomethyltin; and tri- and diphenyltin) were studied in a water-sediment system using artificial seawater and estuarine sediment.

Adsorption coefficients varied from 100.5 to 104.5 and showed the trend of Sn4+ > mono > di > tri in the same substituent series. Larger absorption coefficients were found for aromatic compounds than for aliphatic compounds. Releases of organotin compounds to air from various surfaces are, in general, not significant due to their low vapor pressures and rapid photodegradation at surfaces.

The speciation of organotin compounds is pH-dependent. At lower pHs, the cationic form will be the primary form, and as the pH is increased, the neutral hydroxide compounds will be the predominant species. In the environmentally relevant pH range (pH 5–9), the predominant organotin species will be the neutral hydroxide compounds (i.e., R3SnOH, R2Sn(OH)2, and RSn(OH)3). High concentrations of chloride favor the formation of chloro species. The pKa values for trimethyltin, tributyltin, and triphenyltin cations are approximately 6.60, 6.81, 6.25, and 5.2, respectively. Degradation of organotin compounds in sediments is much slower than in water, and half-lives have been estimated to be several years. In addition to dealkylation of organotin compounds, methylation of tin and organotin compounds by chemical and/or biological means may occur. The contribution of methylation by biotic and abiotic mechanisms is not clear. This pathway may result in fully substituted and volatile tin compounds.

At ambient temperatures, the solubilities of organotin compounds range from 0.0001 to about 50 mg/L. Organotin compounds may partition from water to aquatic organisms. The bioavailability of organotin compounds via the food chain appears to be of minor importance for tributyltin and triphenyltin when compared to uptake via the water phase. Seven-day BCF values were derived for dibutyltin dichloride, dibutyltin dilaurate, tributyltin chloride, bis(tributyltin) oxide, and triphenyltin chloride for muscle, liver, kidney, and vertebra tissue of round crucian carp. The BCF values ranged from 12 in muscle to 5,012 in liver. For all organotin compounds, liver had the highest BCF values. The highest BCFs were found for the tributyltin compounds.

The use of tributyltin (TBT) in antifouling paints on ships has caused significant harm to the marine environment worldwide. Female molluscs are masculinized by TBT at levels as low as ca 1 ng/l, and this effect has severe consequences for their ability to reproduce.

Most investigations on the environmental occurrence of organotin substances have focused on TBT. However, other substances such as dibutyltin (DBT), dioctyltin and monobutyltin (MBT) are used in the society for other reasons and are found in other applications.

Most industrial organotin chemicals (OTCs) are composed of an organotin cation and one or several ligands, and most of these chemicals are reconverted to the organotin cation compounds in natural waters. The cation may form dissolved complexes with e.g. chloride in seawater. Therefore, their environmental partitioning properties such as Kd and Kh depend in part on the balancing anion in the environment. Hydrophobicity increases with increasing number of alkyl groups, and with increasing length of the alkyl chain. Organotins are moderately hydrophobic and associate strongly to particles in natural waters. In harbour sediments, log Kd in the range 3-4.3 have been measured for various OTCs, and the particle affinity increased in the order MBT < DBT < TBT. In various soils, however, the reverse pattern of Kd was observed . In organic soils, log Kd exceeded 4.0, whereas adsorption was less strong in mineral soils. In contrast to hydrophobic pollutants such as PCBs or PAHs (that partition to lipids in organic matter), OTCs are adsorbed to the functional groups of organic matter, e.g. phenolic and carboxylic groups.

Because organotins are generally cations, long-range atmospheric transport has generally not been considered as important. It has though been demonstrated that TBT forms highly volatile chloride species in seawater One study has actually demonstrated the presence of organotins in air from rural sites, showing that long-range atmospheric transport of butyltins and octyltins do occur. MBT was the major species in precipitation and deposition. TBT mainly occurred in the gas phase and it is speculated that the source of butyltins may have been volatile TBT species. Subsequent dealkylation in the atmosphere may convert TBT to DBT and MBT. Organotins are progressively dealkylated in nature, for instance:

TBT-> DBT -> MBT->. Sn4+

Dealkylation proceeds both by photolysis and through enzymatical reactions. This is important to consider when monitoring data are evaluated, since the occurrence of, e.g., DBT may be due to direct release of DBT or to release of TBT that is subsequently dealkylated. Half-lives in soils and sediments are commonly one or a few years, but may be longer under reducing conditions, whereas half-lives in natural waters may range from a few days to several weeks.

Organotin compounds have been detected in various marine organisms, from evertebrates to mammals. In fish and marine mammals, TBT and TPT bioaccumulate more strongly in liver than in muscle. Bioaccumulation is often stronger in bivalves than in fish, a consequence of lower metabolic capacity in bivalves Trisubstituted OTCs are more strongly bioaccumulated than the less lipophilic disubstituted OTCs. Because TBT is dealkylated in many organisms, DBT may be a major species in biota but not necessarily the organotin species that was assimilated. Most studies do not suggest that TBT is biomagnified in aquatic food-chain. However, TPT appears to be biomagnified fairly strongly in the aquatic food chain The trisubstituted substances, TPT and in particular TBT, are widely held as the most toxic organotin substances. Numerous field studies have demonstrated a direct link between TBT and imposes in certain marine organisms, mainly molluscs. Imposex means that females are masculinized and this effect is severe because it directly influences the ability for organisms to reproduce. Imposex has been demonstrated in many coastal areas. These effects occur at very low levels (ca 1 ng/l) for certain organisms. It has been shown in laboratory that TBT causes masculinization also in fish. DBT and MBT does not cause imposex, but both TBT and DBT have negative effects on the reproductive system in mammals. In line with these facts, TBT and TPT were given the highest category in a European review of endocrine disrupting chemicals: "Evidence for endocrine disruption in living organisms". TBT was also classified as "Evidence of potential to cause endocrine disruption in humans".

Persistence and degradability

Ingredient	Persistence: Water/Soil No Data available for all ingredients	Persistence: Air No Data available for all ingredients
Bioaccumulative pote	ential	
Ingredient	Bioaccumulation No Data available for all ingredients	
Mobility in soil		
Ingredient	Mobility No Data available for all ingredients	

13 - DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

Containers may still present a chemical hazard/ danger when empty.

Return to supplier for reuse/ recycling if possible.

- Otherwise:
 - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

• Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their

area. In some areas, certain wastes must be tracked.

Westox Water Repellent

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical
 - wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
 Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

14 - TRANSPORT INFORMATION

Labels Required

	3
Marine Pollutant	NO
HAZCHEM	•3Y

Land transport (ADG)

UN number	1993			
UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains naphtha petroleum, heavy, hydrotreated)			
Transport hazard class(es)	Class 3			
	Subrisk	Not Appl	licable	
Packing group	ш			
Environmental hazard	Not Applicable			
Special precautions for user	Special Provisions 223 274			
	Limited qu	uantity	5 L	
Air transport (ICAO-IATA / DGR)	2)			
UN number	1993			
UN proper shipping name	Flammable liquid, n.o.s. * (contains naphtha petroleum, heavy, hydrotreated)			
Transport hazard class(es)	ICAO/IAT	A Class	3	
	ICAO / IA	TA Subrisk	Not Applicable	
	ERG Cod	e	3L	
Packing group	111			
Environmental hazard	Not Applica	ble		
Special precautions for user	Special pr	ovisions		A3
	Cargo On	ly Packing	Instructions	366
	Cargo Only Maximum Qty/Pack		220 L	
	Passenger and Cargo Packing Instructions		355	
	Passenger and Cargo Maximum Qty / Pack		60 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y344	
	Passenger and Cargo Limited Maximum Qty / Pack		10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1993		
UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains naphtha petroleum, heavy, hydrotreated)		
Transport hazard class(es)	IMDG Class 3		
	IMDG Subrisk	Not Applicable	
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number	F-E , S-E	
	Special provisions	s 223 274 955	
	Limited quantities	5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

15 - REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

NAPHTHA PETROLEUM, HEAVY, HYDROTREATED IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations

International FOSFA List of Banned Immediate Previous Cargoes

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

DI-N-OCTYL TIN DILAURATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

National Inventory	Status	
Australia - AICS	Yes	
Canada – DSL	Yes	
Canada – NDSL	No (naphtha petroleum, heavy, hydrotreated; di-n-octyl tin dilaurate)	
China – IECSC	Yes	
Europe – EINEC / ELINCS / NLP	Yes	
Japan – ENCS	No (naphtha petroleum, heavy, hydrotreated)	
Korea – KECI	Yes	
New Zealand – NZloC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan – TCSI	Yes	
Mexico – INSQ	No (di-n-octyl tin dilaurate)	
Vietnam – NCI	Yes	
Russia – ARIPS	No (di-n-octyl tin dilaurate)	
Legend	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)	

16 - OTHER RELEVANT INFORMATION

Revision Date 10/04/2025 Initial Date 26/03/2002 The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LDL Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from Westox Building Products.

TEL (+61 2) 4628 5010.